人教版高中物理必修二知识点、考点题型整理
第五章 曲线运动
1.曲线运动的特征
(1)曲线运动的轨迹是曲线。
(2)由于运动的速度方向总沿轨迹的切线方向,又由于曲线运动的轨迹是曲线,所以曲线运动的速度方向时刻变化。即使其速度大小保持恒定,由于其方向不断变化,所以说:曲线运动一定是变速运动。
(3)由于曲线运动的速度一定是变化的,至少其方向总是不断变化的,所以,做曲线运动的物体的中速度必不为零,所受到的合外力必不为零,必定有加速度。(注意:合外力为零只有两种状态:静止和匀速直线运动。)
曲线运动速度方向一定变化,曲线运动一定是变速运动,反之,变速运动不一定是曲线运动。
2.物体做曲线运动的条件
(1)从动力学角度看:物体所受合外力方向跟它的速度方向不在同一条直线上。
(2)从运动学角度看:物体的加速度方向跟它的速度方向不在同一条直线上。
3.匀变速运动: 加速度(大小和方向)不变的运动。也可以说是:合外力不变的运动。
4.曲线运动的合力、轨迹、速度之间的关系
(1)轨迹特点:轨迹在速度方向和合力方向之间,且向合力方向一侧弯曲。
(2)合力的效果:合力沿切线方向的分力F2改变速度的大小,沿径向的分力F1改变速度的方向。
①当合力方向与速度方向的夹角为锐角时,物体的速率将增大。
②当合力方向与速度方向的夹角为钝角时,物体的速率将减小。
③当合力方向与速度方向垂直时,物体的速率不变。(举例:匀速圆周运动)
合运动:实际的运动。对应的是合速度。
方法:把合速度分解为沿绳方向和垂直于绳方向。
例1:一艘小船在200m宽的河中横渡到对岸,已知水流速度是3m/s,小船在静水中的速度是5m/s,
求:(1)欲使船渡河时间最短,船应该怎样渡河?最短时间是多少?船经过的位移多大?
(2)欲使航行位移最短,船应该怎样渡河?最短位移是多少?渡河时间多长?
船渡河时间:主要看小船垂直于河岸的分速度,如果小船垂直于河岸没有分速度,则不能渡河。
(此时
解:(1)结论:欲使船渡河时间最短,船头的方向应该垂直于河岸。渡河的最短时间为:
(2)分析:
怎样渡河:船头与河岸成向上游航行。最短位移为:
例2:一艘小船在200m宽的河中横渡到对岸,已知水流速度是5m/s,小船在静水中的速度是4m/s,
求:(1)欲使船渡河时间最短,船应该怎样渡河?最短时间是多少?船经过的位移多大?
(2)欲使航行位移最短,船应该怎样渡河?最短位移是多少?渡河时间多长?
解:(1)结论:欲使船渡河时间最短,船头的方向应该垂直于河岸。
渡河的最短时间为:
(2)方法:以水速的末端点为圆心,以船速的大小为半径做圆,过水速的初端点做圆的切线,切线即为所求合速度方向。
如左图所示:AC即为所求的合速度方向。
相关结论:
4.平抛运动竖直方向做自由落体运动,匀变速直线运动的一切规律在竖直方向上都成立。
5.
6.平抛物体任意时刻瞬时速度方向的反向延长线与初速度方向延长线的交点到抛出点的距离都等于水平位移的一半。(A是OB的中点)。
8.三种转动方式:
1.“绳模型”如上图所示,小球在竖直平面内做圆周运动过最高点情况。(注意:绳对小球只能产生拉力)
2.“杆模型”,小球在竖直平面内做圆周运动过最高点情况(注意:轻杆和细线不同,轻杆对小球既能产生拉力,又能产生推力。)
第六章 万有引力和航天
8.发射速度:采用多级火箭发射卫星时,卫星脱离最后一级火箭时的速度。
运行速度:是指卫星在进入运行轨道后绕地球做匀速圆周运动时的线速度。当卫星“贴着” 地面运行时,运行速度等于第一宇宙速度。
第一宇宙速度(环绕速度):7.9km/s。卫星环绕地球飞行的最大运行速度。地球上发射卫星的最小发射速度。
第二宇宙速度(脱离速度):11.2km/s 。 使人造卫星脱离地球的引力束缚,不再绕地球运行,从地球表面发射所需的最小速度。
第三宇宙速度(逃逸速度):16.7km/s。使人造卫星挣脱太阳引力的束缚,飞到太阳系以外的宇宙空间去,从地球表面发射所需要的最小速度。
第七章 机械能守恒定律
必修二核心知识点总结
一.曲线运动
1.曲线运动的位移:平面直角坐标系 通常设位移方向与x轴夹角为α
2.曲线运动的速度:
①质点在某一点的速度,沿曲线在这一点的切线方向
②速度在平面直角坐标系中可分解为水平速度Vx及竖直速度Vy,V2=Vx2+Vy2
3.曲线运动是变速运动(速度是矢量,方向或大小任一的改变都会造成速度的变化,曲线运动中,速度的方向一定改变)
4.物体做曲线运动的条件:物体所受合力的方向与它的速度方向不在同一直线上
二.平抛运动(曲线运动特例)
1.定义:以一定的速度将物体抛出,如果物体只受重力的作用,这时的运动叫做抛体运动,抛体运动开始时的速度叫做初速度。如果初速度是沿水平方向的,这个运动叫做平抛运动
2.平抛运动的速度:①水平方向做匀速直线运动 初速度V0即为Vx一直保持不变
②竖直方向做自由落体运动 Vy=gt
③合速度:V2=Vx2+Vy2=V02+(gt)2 方向:与X轴的夹角为θ tanθ=Vy/V0=gt/V0
3.平抛运动的位移:①水平方向 X=V0t
②竖直方向y=1/2gt2 ③合位移 S2=x2+y2=(V0t)2+(1/2gt2 )2 方向:与X轴夹角为α tanα=y/x=V0t/½gt2=2V0/gt
三.圆周运动
1.线速度V:①圆周运动的快慢可以用物体通过的弧长与所用时间的比值来量度 该比值即为线速度 ②V=Δs/Δt 单位:m/s③匀速圆周运动:物体沿着圆周运动,并且线速度的大小处处相等(tips:方向时时改变)
2.角速度ω:①物体做圆周运动的快慢还可以用它与圆心连线扫过角度的快慢来描述,即角速度 ② 公式 ω=Δθ/Δt (角度使用弧度制) ω的单位是rad/s
3.转速r:物体单位时间转过的圈数 单位:转每秒或转每分
4.周期T:做匀速圆周运动的物体,转过一周所用的时间 单位:秒S
5.关系式:V=ωr(r为半径) ω=2π/T
6.向心加速度①定义:任何做匀速圆周运动的物体的加速度都指向圆心,这个加速度叫做向心加速度
②表达式 a=V2/r=ω2r=(4π2/T2)r=4π2f2r=4π2n2r(n指转过的圈数)方向:指向圆心
7.向心力 F=mV2/r=mω2r=m(4π2/T2)r=4π2f2mr=4π2n2mr 方向:指向圆心
8.生活中的圆周运动
①铁路的弯道:
②拱形桥:(1)凹形:F向=FN-G 向心加速度的方向竖直向上 (2)凸形:F向=G-FN 向心加速度的方向竖直向下
③航天器失重:航天员受到地球引力与飞船座舱的支持力,合力提供绕地球做匀速圆周运动的所需的向心力 mg-FN=mv2/R v=√gR时FN=0 航天员处于失重状态
④离心运动(逐渐远离圆心):(1)做圆周运动的物体,由于惯性,总有沿切线方向飞去的倾向。当向心力消失或不足时,即做离心运动
(2)应用:洗衣机脱水 加工无缝钢管(离心制管技术)
(3)危害:公路弯道不得超速 高速转动的砂轮 飞轮不得超速 否则会酿成事故
四.开普勒定律
1.开普勒第一定律:所有行星绕太阳运动的轨道都是椭圆,太阳处于椭圆的一个焦点上
2.开普勒第二定律:对任意一个行星来说,它与太阳的连线在相等的时间扫过相等的面积
3.开普勒第三定律:①所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等 ②a—椭圆轨道的半长轴 T—公转周期 则 a3/T2=k 对同一个行星来说,k为常量
五.万有引力定律
1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m1m2的乘积成正比,与它们之间的距离r的平方成反比
2.公式:F=Gm1m2/r2 G为引力常量r的单位为米;m的单位为千克;F的单位为N
3.适用范围:自然界任意两个物体
4.引力常量 G=6.67×10-11N·m2/kg2 卡文迪许(英) 扭秤实验
5.应用①地球质量:(1)不考虑地球自转的影响,地面上质量为m的物体所受的重力mg等于地球对物体的吸引力 即mg=GmM/R2 M=gR2/G R为地球半径 M为地球质量
②计算天体质量:设M为某天体质量 r 为环绕星体的轨道半径 T为环绕周期
万有引力充当向心力可知 GMm/r2=(m4π2/T2)r 得出M=4π2r3/GT2
6.宇宙航行:①第一宇宙速度:物体在地面附近绕地球做匀速圆周运动的速度 7.9KM/s(超过该速度,脱离地球。最大的环绕速度,最小的发射速度)
②第二宇宙速度:太阳系内 11.2KM/s
③第三宇宙速度:脱离太阳系 17.9KM/s
7.经典力学具有局限性:适用于低速宏观
六.能量
1.势能:相互作用的物体凭借其位置而具有的能量(弹性势能,重力势能)
2.动能:物体由于运动而具有的能量
七.功(W)
1.物体做功的条件:①力 ②在力的方向上发生位移
2.公式:W=FLcosα F—力 L—位移 α—力与位移的夹角
3.单位: 焦耳 J 1J=1N·m 标量
4.正功与负功 ①α=π/2 不做功 ②α<π/2 正功 ③π/2 <α<=π 负功
5.当一个物体在几个力的共同作用下发生一段位移时,这几个力对物体所做的总功,等于各个力分别对物体所做功的代数和。
八.功率(P)
1.定义:做功的快慢
2.公式: P=W/t=Fv 单位 瓦特 简称瓦 符号:W 1W=1J/s
九.重力势能(Ep)1.定义:物体由于被举高而具有的能量
2.表达式:Ep=mgh
3.重力做的功(WG):物体运动时,重力对它做的功只跟它的起点和终点得位置有关,而跟物体运动运动的路径无关 WG =mgh1-mgh2=Ep1-Ep2 重力势能增加,重力做负功;重力势能减少,重力做正功
4.重力势能的相对性:物体的重力势能总是相对于某一水平面来说的,这个水平面叫做参考平面。在参考平面,物体的重力势能取做零。
5.势能是系统共有的
十.弹性势能:发生弹性形变的物体各部分之间,由于有弹力的相互作用,也具有势能,这种势能叫做弹性势能
十一.动能定理
1.动能表达式:Ek=1/2mv2
2.动能定理:
①内容:力在一个过程中对物体做的功,等于物体在这个过程中动能的变化
②表达式:W=Ek2-Ek1 (W指合外力做的功)
十二.机械能守恒定律
在只有重力或弹力做功的物体系统内,动能和势能可以相互转化,而总的机械能保持不变
十三.能量守恒定律能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变。
物理必修一的知识点和几种常考的题型。
题型一 运动的合成与分解问题
题型概述:运动的合成与分解问题常见的模型有两类。一是绳(杆)末端速度分解的问题,二是小船过河的问题,两类问题的关键都在于速度的合成与分解。
题型二 抛体运动问题
题型概述:抛体运动包括平抛运动和斜抛运动,不管是平抛运动还是斜抛运动,研究方法都是采用正交分解法,一般是将速度分解到水平和竖直两个方向上。
题型三 圆周运动问题
题型概述:圆周运动问题按照受力情况可分为水平面内的圆周运动和竖直面内的圆周运动,按其运动性质可分为匀速圆周运动和变速圆周运动。水平面内的圆周运动多为匀速圆周运动,竖直面内的圆周运动一般为变速圆周运动。对水平面内的圆周运动重在考查向心力的供求关系及临界问题,而竖直面内的圆周运动则重在考查最高点的受力情况。
思维模板:(1)对圆周运动,应先分析物体是否做匀速圆周运动,若是,则物体所受的合外力等于向心力,由
(2)竖直面内的圆周运动可以分为三个模型:
绳模型:只能对物体提供指向圆心的弹力,能通过最高点的临界态为重力等于向心力。
杆模型:可以提供指向圆心或背离圆心的力,能通过最高点的临界态是速度为零。
题型四 天体运动类问题
题型概述:天体运动类问题是牛顿运动定律与万有引力定律及圆周运动的综合性题目,近几年来考查频率极高。
思维模板:对天体运动类问题,应紧抓两个公式:
题型五 机车的启动问题
题型概述:
注意:
(1)机车以额定功率启动。过程发动机做的功只能用W=Pt计算,不能用W=Fs计算(因为F为变力)。
(2)机车以恒定加速度启动时,第1过程发动机做的功只能用W=Fs计算,不能用W=Pt计算(因为P为变功率)。
题型六 以能量为核心的综合应用问题
题型概述:以能量为核心的综合应用问题一般分四类。第一类为单体机械能守恒问题,第二类为多体系统机械能守恒问题,第三类为单体动能定理问题,第四类为多体系统功能关系(能量守恒)问题。多体系统的组成模式:两个或多个叠放在一起的物体,用细线或轻杆等相连的两个或多个物体,直接接触的两个或多个物体。
思维模板:能量问题的解题工具一般有动能定理、能量守恒定律、机械能守恒定律。
(1)动能定理使用方法简单,只要选定物体和过程,直接列出方程即可,动能定理适用于所有过程;
(2)能量守恒定律同样适用于所有过程,分析时只要分析出哪些能量减少,哪些能量增加,根据减少的能量等于增加的能量列方程即可;
(3)机械能守恒定律只是能量守恒定律的一种特殊形式,但在力学中也非常重要。很多题目都可以用两种甚至三种方法求解,可根据题目情况灵活选取。
第五章 曲线运动
一、曲线运动
1.曲线运动的特征
(1)曲线运动的轨迹是曲线。
(2)由于运动的速度方向总沿轨迹的切线方向,又由于曲线运动的轨迹是曲线,所以曲线运动的速度方向时刻变化。即使其速度大小保持恒定,由于其方向不断变化,所以说:曲线运动一定是变速运动。
(3)由于曲线运动的速度一定是变化的,至少其方向总是不断变化的,所以,做曲线运动的物体的中速度必不为零,所受到的合外力必不为零,必定有加速度。(注意:合外力为零只有两种状态:静止和匀速直线运动。)
曲线运动速度方向一定变化,曲线运动一定是变速运动,反之,变速运动不一定是曲线运动。
2.物体做曲线运动的条件
(1)从动力学角度看:物体所受合外力方向跟它的速度方向不在同一条直线上。
(2)从运动学角度看:物体的加速度方向跟它的速度方向不在同一条直线上。
3.匀变速运动: 加速度(大小和方向)不变的运动。也可以说是:合外力不变的运动。
4.曲线运动的合力、轨迹、速度之间的关系
(1)轨迹特点:轨迹在速度方向和合力方向之间,且向合力方向一侧弯曲。
(2)合力的效果:合力沿切线方向的分力F2改变速度的大小,沿径向的分力F1改变速度的方向。
①当合力方向与速度方向的夹角为锐角时,物体的速率将增大。
②当合力方向与速度方向的夹角为钝角时,物体的速率将减小。
③当合力方向与速度方向垂直时,物体的速率不变。(举例:匀速圆周运动)
二、绳拉物体
合运动:实际的运动。对应的是合速度。
方法:把合速度分解为沿绳方向和垂直于绳方向。
三、小船渡河
例1:一艘小船在200m宽的河中横渡到对岸,已知水流速度是3m/s,小船在静水中的速度是5m/s,
求:(1)欲使船渡河时间最短,船应该怎样渡河?最短时间是多少?船经过的位移多大?
(2)欲使航行位移最短,船应该怎样渡河?最短位移是多少?渡河时间多长?
船渡河时间:主要看小船垂直于河岸的分速度,如果小船垂直于河岸没有分速度,则不能渡河。
(此时
解:(1)结论:欲使船渡河时间最短,船头的方向应该垂直于河岸。渡河的最短时间为:
(2)分析:
怎样渡河:船头与河岸成向上游航行。最短位移为:
例2:一艘小船在200m宽的河中横渡到对岸,已知水流速度是5m/s,小船在静水中的速度是4m/s,
求:(1)欲使船渡河时间最短,船应该怎样渡河?最短时间是多少?船经过的位移多大?
(2)欲使航行位移最短,船应该怎样渡河?最短位移是多少?渡河时间多长?
解:(1)结论:欲使船渡河时间最短,船头的方向应该垂直于河岸。
渡河的最短时间为:
(2)方法:以水速的末端点为圆心,以船速的大小为半径做圆,过水速的初端点做圆的切线,切线即为所求合速度方向。
如左图所示:AC即为所求的合速度方向。
相关结论:
四、平抛运动基本规律
4.平抛运动竖直方向做自由落体运动,匀变速直线运动的一切规律在竖直方向上都成立。
5.
6.平抛物体任意时刻瞬时速度方向的反向延长线与初速度方向延长线的交点到抛出点的距离都等于水平位移的一半。(A是OB的中点)。
五、匀速圆周运动
8.三种转动方式:
六、竖直平面的圆周运动
1.“绳模型”如上图所示,小球在竖直平面内做圆周运动过最高点情况。(注意:绳对小球只能产生拉力)
2.“杆模型”,小球在竖直平面内做圆周运动过最高点情况(注意:轻杆和细线不同,轻杆对小球既能产生拉力,又能产生推力。)
第六章 万有引力与航天
一、万有引力定律
8.发射速度:采用多级火箭发射卫星时,卫星脱离最后一级火箭时的速度。
运行速度:是指卫星在进入运行轨道后绕地球做匀速圆周运动时的线速度。当卫星“贴着” 地面运行时,运行速度等于第一宇宙速度。
第一宇宙速度(环绕速度):7.9km/s。卫星环绕地球飞行的最大运行速度。地球上发射卫星的最小发射速度。
第二宇宙速度(脱离速度):11.2km/s 。 使人造卫星脱离地球的引力束缚,不再绕地球运行,从地球表面发射所需的最小速度。
第三宇宙速度(逃逸速度):16.7km/s。使人造卫星挣脱太阳引力的束缚,飞到太阳系以外的宇宙空间去,从地球表面发射所需要的最小速度。
第七章 机械能守恒定律
复制打开网址 www.1ydt.com 下载全册PPT课件及word教案试卷点击阅读原文看全部教学内容